
CHAPTER 2
Kinematics

2.1 Displacement

• Define position, displacement, distance, and distance traveled.
• Explain the relationship between position and displacement.
• Distinguish between displacement and distance traveled.
• Calculate displacement and distance given initial position, final position, and the path between the two.

2.2 Vectors, Scalars, and Coordinate Systems

• Define and distinguish between scalar and vector quantities.
• Assign a coordinate system for a scenario involving one-dimensional motion.

2.3 Time, Velocity, and Speed

• Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed,
displacement, and time.

• Calculate velocity and speed given initial position, initial time, final position, and final time.
• Derive a graph of velocity vs. time given a graph of position vs. time.
• Interpret a graph of velocity vs. time.

Figure 2.1 The motion of an American kestrel through the air can be described by the bird’s displacement, speed,
velocity, and acceleration. When it flies in a straight line without any change in direction, its motion is said to be one
dimensional. (credit: Vince Maidens, Wikimedia Commons)
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INTRODUCTION TO ONE-DIMENSIONAL KINEMATICS

2.4 Acceleration

• Define and distinguish between instantaneous acceleration, average acceleration, and deceleration.
• Calculate acceleration given initial time, initial velocity, final time, and final velocity.

2.5 Motion Equations for Constant Acceleration in One Dimension

• Calculate displacement of an object that is not accelerating, given initial position and velocity.
• Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
• Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and

acceleration.

2.6 Problem-Solving Basics for One-Dimensional Kinematics

• Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
• Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

2.7 Falling Objects

• Describe the effects of gravity on objects in motion.
• Describe the motion of objects that are in free fall.
• Calculate the position and velocity of objects in free fall.

2.8 Graphical Analysis of One-Dimensional Motion

• Describe a straight-line graph in terms of its slope and y-intercept.
• Determine average velocity or instantaneous velocity from a graph of position vs. time.
• Determine average or instantaneous acceleration from a graph of velocity vs. time.
• Derive a graph of velocity vs. time from a graph of position vs. time.
• Derive a graph of acceleration vs. time from a graph of velocity vs. time.

Objects are in motion everywhere we look. Everything from a tennis
game to a space-probe flyby of the planet Neptune involves motion. When you are resting, your heart moves blood through your
veins. And even in inanimate objects, there is continuous motion in the vibrations of atoms and molecules. Questions about
motion are interesting in and of themselves: How long will it take for a space probe to get to Mars? Where will a football land if it
is thrown at a certain angle? But an understanding of motion is also key to understanding other concepts in physics. An
understanding of acceleration, for example, is crucial to the study of force.

Our formal study of physics begins with kinematics which is defined as the study of motion without considering its causes. The
word “kinematics” comes from a Greek term meaning motion and is related to other English words such as “cinema” (movies)
and “kinesiology” (the study of human motion). In one-dimensional kinematics and Two-Dimensional Kinematics we will study
only the motion of a football, for example, without worrying about what forces cause or change its motion. Such considerations
come in other chapters. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or one-
dimensional motion. In Two-Dimensional Kinematics, we apply concepts developed here to study motion along curved paths
(two- and three-dimensional motion); for example, that of a car rounding a curve.

Click to view content (https://www.youtube.com/embed/bkbG8BJsInE)
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2.1 Displacement

Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by

their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position
In order to describe the motion of an object, you must first be able to describe its position—where it is at any particular time.
More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame,
and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket
launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor’s position
could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we use
reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an
airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement
If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a
passenger moves toward the rear of an airplane), then the object’s position changes. This change in position is known as
displacement. The word “displacement” implies that an object has moved, or has been displaced.

In this text the upper case Greek letter (delta) always means “change in” whatever quantity follows it; thus, means change
in position. Always solve for displacement by subtracting initial position from final position .

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles,
feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need
to convert them into meters to complete the calculation.

Displacement
Displacement is the change in position of an object:

where is displacement, is the final position, and is the initial position.

2.1

2.1 • Displacement 37



Figure 2.3 A professor paces left and right while lecturing. Her position relative to Earth is given by . The displacement of the

professor relative to Earth is represented by an arrow pointing to the right.

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by . The

displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow 

representing his displacement is twice as long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 

2.3.

Note that displacement has a direction as well as a magnitude. The professor’s displacement is 2.0 m to the right, and the airline 
passenger’s displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus 
sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are 
free to select positive as being any direction). The professor’s initial position is and her final position is
Thus her displacement is

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane
passenger’s initial position is and his final position is , so his displacement is

2.2

2.3
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His displacement is negative because his motion is toward the rear of the plane, or in the negative direction in our coordinate
system.

Distance
Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of
displacement between two positions. Note that the distance between two positions is not the same as the distance traveled
between them. Distance traveled is the total length of the path traveled between two positions. Distance has no direction and,
thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

CHECK YOUR UNDERSTANDING
A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she
ride? (c) What is the magnitude of her displacement?

Solution

Figure 2.5

(a) The rider’s displacement is . (The displacement is negative because we take east to be positive and
west to be negative.)

(b) The distance traveled is .

(c) The magnitude of the displacement is .

Misconception Alert: Distance Traveled vs. Magnitude of Displacement
It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by
magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For
example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still
end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her
displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with
displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to
assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the
position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled,
however, is the total length of the path taken between the two marks.
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2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its

displacement in a specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described

based on a coordinate system. In this case, it may be convenient to choose motion toward the left as positive motion (it is the forward

direction for the plane), although in many cases, the -coordinate runs from left to right, with motion to the right as positive and motion to

the left as negative. (credit: Armchair Aviator, Flickr)

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude,
distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar
quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h
east and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus or minus sign. Vectors are represented
graphically by arrows. An arrow used to represent a vector has a length proportional to the vector’s magnitude (e.g., the larger
the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a
magnitude, but no direction. For example, a temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a 90
km/h speed limit, a person’s 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note,
however, that a scalar can be negative, such as a temperature. In this case, the minus sign indicates a point on a scale
rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion
In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For
one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when
describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative.
With vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in
Figure 2.6, it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion
of falling objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is
useful to define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a
positive direction and start solving a problem, you cannot change it.
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Figure 2.7 It is usually convenient to consider motion upward or to the right as positive and motion downward or to the left as negative

.

CHECK YOUR UNDERSTANDING
A person’s speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a scalar
or a vector quantity? Explain.

Solution
Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a vector
quantity, it would change as direction changes (even if its magnitude remained constant).

2.3 Time, Velocity, and Speed

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was
the runner’s speed?” cannot be answered without an understanding of other concepts. In this section we add definitions of time,
velocity, and speed to expand our description of motion.

Time
As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are measured.
This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may be a
number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple—time is
change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We
might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to
measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a
dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.
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How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an
airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end
of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed time
would be 50 min. Elapsed time is the difference between the ending time and beginning time,

where is the change in time or elapsed time, is the time at the end of the motion, and is the time at the beginning of the
motion. (As usual, the delta symbol, , means the change in the quantity that follows it.)

Life is simpler if the beginning time is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would
simply read zero at the start of the lecture and 50 min at the end. If , then .

In this text, for simplicity’s sake,

• motion starts at time equal to zero
• the symbol is used for elapsed time unless otherwise specified

Velocity
Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small
amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or
kilometers per hour.

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and
direction. The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph),
and cm/s, are in common use. Suppose, for example, an airplane passenger took 5 seconds to move −4 m (the negative sign
indicates that displacement is toward the back of the plane). His average velocity would be

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point,
however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up
before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time
intervals.

2.4

Average Velocity
Average velocity is displacement (change in position) divided by the time of travel,

where is the average (indicated by the bar over the ) velocity, is the change in position (or displacement), and and
are the final and beginning positions at times and , respectively. If the starting time is taken to be zero, then the

average velocity is simply

2.5

2.6

2.7
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Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its
logical conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the
instantaneous velocity or the velocity at a specific instant. A car’s speedometer, for example, shows the magnitude (but not the
direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how
long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity is the
average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, , at a precise instant can involve taking a limit, a calculus operation beyond
the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without
calculus.

Speed
In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have
the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar.
Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between
instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant
had an instantaneous velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that same time his
instantaneous speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h
due north. Your instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average
speed, however, is very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than the magnitude of displacement. So average speed can be greater than
average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and
your car’s odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity,
however, was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero
for a round trip.) Thus average speed is not simply the magnitude of average velocity.

Figure 2.10 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement
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for the round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be
very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 2.11.
(Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which
is unrealistic given that we’ll probably stop at the store. But for simplicity’s sake, we will model it with no stops or changes in
speed. We are also assuming that the route between the store and the house is a perfectly straight line.)

Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.
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CHECK YOUR UNDERSTANDING
A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the two
stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in m/s?

Solution
(a) The average velocity of the train is zero because ; the train ends up at the same place it starts.

(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a total
distance of 80 miles.

2.4 Acceleration

Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its

velocity. (credit: Steve Conry, Flickr)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater
the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with
these notions, but more inclusive.

Making Connections: Take-Home Investigation—Getting a Sense of Speed
If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour. But
what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a better
sense of what these values really mean, do some observations and calculations on your own:

• calculate typical car speeds in meters per second
• estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
• determine the speed of an ant, snail, or falling leaf

2.8

2.9

Average Acceleration
Average Acceleration is the rate at which velocity changes,

2.10
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Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration are , meters per second squared or
meters per second per second, which literally means by how many meters per second the velocity changes every second.

Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in
magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is
accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration
when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion.
When an object slows down, its acceleration is opposite to the direction of its motion. This is known as deceleration.

Figure 2.13 A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its

direction of motion. (credit: Yusuke Kawasaki, Flickr)

where is average acceleration, is velocity, and is time. (The bar over the means average acceleration.)

Acceleration as a Vector
Acceleration is a vector in the same direction as the change in velocity, . Since velocity is a vector, it can change either in
magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Misconception Alert: Deceleration vs. Negative Acceleration
Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always
reduces speed. Negative acceleration, however, is acceleration in the negative direction in the chosen coordinate system.
Negative acceleration may or may not be deceleration, and deceleration may or may not be considered negative acceleration.
For example, consider Figure 2.14.
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EXAMPLE 2.1

Calculating Acceleration: A Racehorse Leaves the Gate
A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average
acceleration?

Figure 2.14 (a) This car is speeding up as it moves toward the right. It therefore has positive acceleration in our coordinate system. (b)

This car is slowing down as it moves toward the right. Therefore, it has negative acceleration in our coordinate system, because its

acceleration is toward the left. The car is also decelerating: the direction of its acceleration is opposite to its direction of motion. (c)

This car is moving toward the left, but slowing down over time. Therefore, its acceleration is positive in our coordinate system because

it is toward the right. However, the car is decelerating because its acceleration is opposite to its motion. (d) This car is speeding up as it

moves toward the left. It has negative acceleration because it is accelerating toward the left. However, because its acceleration is in

the same direction as its motion, it is speeding up (not decelerating).
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Figure 2.15 (credit: Jon Sullivan, PD Photo.org)

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to visualize
it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

Figure 2.16

We can solve this problem by identifying and from the given information and then calculating the average acceleration
directly from the equation .

Solution

1. Identify the knowns. , (the negative sign indicates direction toward the west), .

2. Find the change in velocity. Since the horse is going from zero to , its change in velocity equals its final velocity:
.

3. Plug in the known values ( and ) and solve for the unknown .

Discussion

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of due west means
that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second, which we write
as . This is truly an average acceleration, because the ride is not smooth. We shall see later that an acceleration of this
magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration
Instantaneous acceleration , or the acceleration at a specific instant in time, is obtained by the same process as discussed for
instantaneous velocity in Time, Velocity, and Speed—that is, by considering an infinitesimally small interval of time. How do we
find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is representative

2.11
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of the motion. Figure 2.17 shows graphs of instantaneous acceleration versus time for two very different motions. In Figure
2.17(a), the acceleration varies slightly and the average over the entire interval is nearly the same as the instantaneous
acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the average (in this
case about ). In Figure 2.17(b), the acceleration varies drastically over time. In such situations it is best to consider
smaller time intervals and choose an average acceleration for each. For example, we could consider motion over the time
intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of and , respectively.

Figure 2.17 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only

slightly and is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any

given time. (b) Here the acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated

forward and backward as it bumps along. It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly

constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in Figure 2.18. In (a) the shuttle moves to the right,
and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the
reasoning that goes into solving problems.
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Figure 2.18 One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6,

and Example 2.7. Here we have chosen the -axis so that + means to the right and means to the left for displacements, velocities, and

accelerations. (a) The subway train moves to the right from to . Its displacement is +2.0 km. (b) The train moves to the left from

to . Its displacement is . (Note that the prime symbol (′) is used simply to distinguish between displacement in the two

different situations. The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)

EXAMPLE 2.2

Calculating Displacement: A Subway Train
What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure 2.18?

Strategy

A drawing with a coordinate system is already provided, so we don’t need to make a sketch, but we should analyze it to make
sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use the
equation . This is straightforward since the initial and final positions are given.

Solution

1. Identify the knowns. In the figure we see that and for part (a), and and
for part (b).

2. Solve for displacement in part (a).

3. Solve for displacement in part (b).

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to the
left and thus has a negative sign.

2.12

2.13
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EXAMPLE 2.3

Comparing Distance Traveled with Displacement: A Subway Train
What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.18?

Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to displacement.
Distance between two positions is defined to be the magnitude of displacement, which was found in Example 2.2. Distance
traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of the subway train
shown in Figure 2.18, the distance traveled is the same as the distance between the initial and final positions of the train.

Solution

1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km, and
the distance traveled was 2.00 km.

2. The displacement for part (b) was Therefore, the distance between the initial and final positions was 1.50 km, and
the distance traveled was 1.50 km.

Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

EXAMPLE 2.4

Calculating Acceleration: A Subway Train Speeding Up
Suppose the train in Figure 2.18(a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average
acceleration during that time interval?

Strategy

It is worth it at this point to make a simple sketch:

Figure 2.19

This problem involves three steps. First we must determine the change in velocity, then we must determine the change in time,
and finally we use these values to calculate the acceleration.

Solution

1. Identify the knowns. (the trains starts at rest), , and .

2. Calculate . Since the train starts from rest, its change in velocity is , where the plus sign means velocity
to the right.

3. Plug in known values and solve for the unknown, .

2.14
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4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of meters
and seconds. (See Physical Quantities and Units for more guidance.)

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with a
velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

EXAMPLE 2.5

Calculate Acceleration: A Subway Train Slowing Down
Now suppose that at the end of its trip, the train in Figure 2.18(a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What is its
average acceleration while stopping?

Strategy

Figure 2.20

In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous example, we
must find the change in velocity and the change in time and then solve for acceleration.

Solution

1. Identify the knowns. , (the train is stopped, so its velocity is 0), and .

2. Solve for the change in velocity, .

3. Plug in the knowns, and , and solve for .

4. Convert the units to meters and seconds.

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive velocity
in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction as the change
in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction opposite to the
velocity.

The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure
2.21. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)
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Figure 2.21 (a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and

more quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the

journey, while the velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train’s velocity

increases as it accelerates at the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration).

It decreases as the train decelerates at the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration

as it speeds up at the beginning of the journey. It has no acceleration as it travels at constant velocity in the middle of the journey. Its

acceleration is negative as it slows down at the end of the journey.
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EXAMPLE 2.6

Calculating Average Velocity: The Subway Train
What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its trip?

Figure 2.22

Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative
displacement.

Solution

1. Identify the knowns. , , .

2. Determine displacement, . We found to be in Example 2.2.

3. Solve for average velocity.

4. Convert units.

Discussion

The negative velocity indicates motion to the left.

EXAMPLE 2.7

Calculating Deceleration: The Subway Train
Finally, suppose the train in Figure 2.22 slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average acceleration?

Strategy

Once again, let’s draw a sketch:
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Figure 2.23

As before, we must find the change in velocity and the change in time to calculate average acceleration.

Solution

1. Identify the knowns. , , .

2. Calculate . The change in velocity here is actually positive, since

3. Solve for .

4. Convert units.

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to the
left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the same
direction as the change in velocity, which is positive here. As in Example 2.5, this acceleration can be called a deceleration since
it is in the direction opposite to the velocity.

Sign and Direction
Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system,
plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity.
But it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not
the case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration
was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the
train moving to the left in Figure 2.22 is sped up by an acceleration to the left. In that case, both and are negative. The plus
and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is speeding
up. If acceleration has the opposite sign as the velocity, the object is slowing down.

CHECK YOUR UNDERSTANDING
An airplane lands on a runway traveling east. Describe its acceleration.

Solution
If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also
decelerating: its acceleration is opposite in direction to its velocity.
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PHET EXPLORATIONS

Moving Man Simulation
Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion.
Set the position, velocity, or acceleration and let the simulation move the man for you.

Click to view content (https://phet.colorado.edu/sims/moving-man/moving-man-600.png)

Figure 2.24

Moving Man Simulation (https://phet.colorado.edu/en/simulation/legacy/moving-man)

2.5 Motion Equations for Constant Acceleration in One
Dimension

Figure 2.25 Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury,

England. (credit: Barry Skeates, Flickr)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a
given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop
some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration
already covered.

Notation: t, x, v, a
First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is
a great simplification. Since elapsed time is , taking means that , the final time on the stopwatch.
When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, is the
initial position and is the initial velocity. We put no subscripts on the final values. That is, is the final time, is the final
position, and is the final velocity. This gives a simpler expression for elapsed time—now, . It also simplifies the
expression for displacement, which is now . Also, it simplifies the expression for change in velocity, which is now

. To summarize, using the simplified notation, with the initial time taken to be zero,

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under
consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find
instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,
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so we use the symbol for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations
we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations.
Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the
average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top
speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant
acceleration.

The equation reflects the fact that, when acceleration is constant, is just the simple average of the initial and final
velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then your
average velocity during this steady increase is 45 km/h. Using the equation to check this, we see that

which seems logical.

EXAMPLE 2.8

Calculating Displacement: How Far does the Jogger Run?
A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position, taking
his initial position to be zero?

Strategy

Draw a sketch.

Figure 2.26

2.25

Solving for Displacement ( ) and Final Position ( ) from Average Velocity when
Acceleration ( ) is Constant
To get our first two new equations, we start with the definition of average velocity:

Substituting the simplified notation for and yields

Solving for yields

where the average velocity is
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The final position is given by the equation

To find , we identify the values of , , and from the statement of the problem and substitute them into the equation.

Solution

1. Identify the knowns. , , and .

2. Enter the known values into the equation.

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation gives insight into the relationship between displacement, average velocity, and time. It shows, for
example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on
rather than on raised to some other power, such as . When graphed, linear functions look like straight lines with a constant
slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45 km/h.

Figure 2.27 There is a linear relationship between displacement and average velocity. For a given time , an object moving twice as fast as

another object will move twice as far as the other object.

2.31
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Solving for Final Velocity
We can derive another useful equation by manipulating the definition of acceleration.

Substituting the simplified notation for and gives us

Solving for yields
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EXAMPLE 2.9

Calculating Final Velocity: An Airplane Slowing Down after Landing
An airplane lands with an initial velocity of 70.0 m/s and then decelerates at for 40.0 s. What is its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is decelerating.

Figure 2.28

Solution

1. Identify the knowns. , , .

2. Identify the unknown. In this case, it is final velocity, .

3. Determine which equation to use. We can calculate the final velocity using the equation .

4. Plug in the known values and solve.

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines, reverse
thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by a negative
final velocity, which is not the case here.

Figure 2.29 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal.

Note that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation gives us insight into the relationships among velocity,
acceleration, and time. From it we can see, for example, that

• final velocity depends on how large the acceleration is and how long it lasts
• if the acceleration is zero, then the final velocity equals the initial velocity , as expected (i.e., velocity is constant)
• if is negative, then the final velocity is less than the initial velocity

(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and
experiences to check that they do indeed describe nature accurately.)

2.36
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EXAMPLE 2.10

Calculating Displacement of an Accelerating Object: Dragsters
Dragsters can achieve average accelerations of . Suppose such a dragster accelerates from rest at this rate for 5.56 s.
How far does it travel in this time?

Making Connections: Real-World Connection

Figure 2.30 The Space Shuttle Endeavor blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov,

Flickr)

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater
velocity in the first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more
difficult for an enemy to destroy). But the Space Shuttle obtains a greater final velocity, so that it can orbit the earth rather
than come directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant ( )
We can combine the equations above to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

Adding to each side of this equation and dividing by 2 gives

Since for constant acceleration, then

Now we substitute this expression for into the equation for displacement, , yielding
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Figure 2.31 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William

Thurmond. Photo Courtesy of U.S. Army.)

Strategy

Draw a sketch.

Figure 2.32

We are asked to find displacement, which is if we take to be zero. (Think about it like the starting line of a race. It can be
anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation once we
identify , , and from the statement of the problem.

Solution

1. Identify the knowns. Starting from rest means that , is given as and is given as 5.56 s.

2. Plug the known values into the equation to solve for the unknown :

Since the initial position and velocity are both zero, this simplifies to

Substituting the identified values of and gives

yielding

Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance for
drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can do a
quarter mile in even less time than this.
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What else can we learn by examining the equation We see that:

• displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster covers
only one fourth of the total distance in the first half of the elapsed time

• if acceleration is zero, then the initial velocity equals average velocity ( ) and becomes

EXAMPLE 2.11

Calculating Final Velocity: Dragsters
Calculate the final velocity of the dragster in Example 2.10 without using information about time.

Strategy

Draw a sketch.

Figure 2.33

The equation is ideally suited to this task because it relates velocities, acceleration, and displacement,
and no time information is required.

Solution

1. Identify the known values. We know that , since the dragster starts from rest. Then we note that
(this was the answer in Example 2.10). Finally, the average acceleration was given to be .

2. Plug the knowns into the equation and solve for

Thus

To get , we take the square root:

Solving for Final Velocity when Velocity Is Not Constant ( )
A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve for , we get

Substituting this and into , we get
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Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also, note
that a square root has two values; we took the positive value to indicate a velocity in the same direction as the acceleration.

An examination of the equation can produce further insights into the general relationships among
physical quantities:

• The final velocity depends on how large the acceleration is and the distance over which it acts
• For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to

stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together
In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic
manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the
equations needed.

EXAMPLE 2.12

Calculating Displacement: How Far Does a Car Go When Coming to a Halt?
On dry concrete, a car can decelerate at a rate of , whereas on wet concrete it can decelerate at only . Find
the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on wet concrete. (c) Repeat
both calculations, finding the displacement from the point where the driver sees a traffic light turn red, taking into account his
reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Figure 2.34

Summary of Kinematic Equations (constant )
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In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we need
to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Solution for (a)

1. Identify the knowns and what we want to solve for. We know that ; ; ( is negative
because it is in a direction opposite to velocity). We take to be 0. We are looking for displacement , or .

2. Identify the equation that will help up solve the problem. The best equation to use is

This equation is best because it includes only one unknown, . We know the values of all the other variables in this equation.
(There are other equations that would allow us to solve for , but they require us to know the stopping time, , which we do not
know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for .

4. Enter known values.

Thus,

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is . The
result is

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer this
question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It is
reasonable to assume that the velocity remains constant during the driver’s reaction time.

1. Identify the knowns and what we want to solve for. We know that ; ; . We take
to be 0. We are looking for .

2. Identify the best equation to use.

works well because the only unknown value is , which is what we want to solve for.

3. Plug in the knowns to solve the equation.

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet concrete
15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.

a. 64.3 m + 15.0 m = 79.3 m when dry
b. 90.0 m + 15.0 m = 105 m when wet
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Figure 2.35 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the

braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total

distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car on
wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more important is
the general approach to solving problems. We identify the knowns and the quantities to be determined and then find an
appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in fact be
solved by other methods, but the solutions presented above are the shortest.

EXAMPLE 2.13

Calculating Time: A Car Merges into Traffic
Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at 
how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

Draw a sketch.

Figure 2.36

We are asked to solve for the time . As before, we identify the known quantities in order to choose a convenient physical
relationship (that is, an equation with one unknown, ).

Solution

1. Identify the knowns and what we want to solve for. We know that ; ; and .
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2. We need to solve for . Choose the best equation. works best because the only unknown in the equation
is the variable for which we need to solve.

3. We will need to rearrange the equation to solve for . In this case, it will be easier to plug in the knowns first.

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s) to
cancel by taking , where is the magnitude of time and s is the unit. Doing so leaves

5. Use the quadratic formula to solve for .

(a) Rearrange the equation to get 0 on one side of the equation.

This is a quadratic equation of the form

where the constants are .

(b) Its solutions are given by the quadratic formula:

This yields two solutions for , which are

In this case, then, the time is in seconds, or

A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We can
discard that solution. Thus,

Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are
meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a typical
freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and
insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that will
help you succeed in this invaluable task.
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Making Connections: Take-Home Experiment—Breaking News
We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of cars,
runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car doing a
slow (and safe) stop. Recall that, for average acceleration, . While traveling in a car, slowly apply the brakes as
you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in seconds) to stop.
From this, calculate the deceleration in miles per hour per second. Convert this to meters per second squared and compare
with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.
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CHECK YOUR UNDERSTANDING

A rocket accelerates at a rate of during launch. How long does it take the rocket to reach a velocity of 400 m/s?

Solution
To answer this, choose an equation that allows you to solve for time , given only , , and .

Rearrange to solve for .

2.6 Problem-Solving Basics for One-Dimensional Kinematics

Figure 2.37 Problem-solving skills are essential to your success in Physics. (credit: scui3asteveo, Flickr)

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to
apply broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It
is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new
situations, whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are
useful both for solving problems in this text and for applying physics in everyday and professional life.

Problem-Solving Steps
While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem
solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1
Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.
You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation
is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical
quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2
Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very
succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally
identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means
velocity is zero, and we often can take initial time and position as zero.

Step 3
Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not
always obvious what needs to be found or in what sequence. Making a list can help.
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Step 4
Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is
easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily
solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the
problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is
especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or
more) different equations to get the final answer.

Step 5
Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with
units. This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the
answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical
part of the answer is also correct.

Step 6
Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to
accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units.
Your judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and
finer judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem
back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics
than just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously.
There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem
solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is
to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more
difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you
encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results
Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is
unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then
produces an unreasonable result. For example, if a person starting a foot race accelerates at for 100 s, his final speed
will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The physics is
correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the result of a
problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in judging
whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1
Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example
given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find
the unknown final velocity. That is,

Step 2
Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, …? In this
case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

This velocity is about four times greater than a person can run—so it is too large.

2.72

2.73

68 Chapter 2 • Kinematics

Access for free at openstax.org.



Step 3
If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there
are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration
and think about what the number means. If someone accelerates at , their velocity is increasing by 0.4 m/s each
second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant
rate of for 100 s (almost two minutes).

2.7 Falling Objects
Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by
dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling
objects, we can examine some interesting situations and learn much about gravity in the process.

Gravity
The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given
location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This
experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we
expect light objects to fall slower than heavy ones.

Figure 2.38 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general

characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to

gravity is only .

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will
reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is
not large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between
clothes and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the
ideal situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called the
acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics equations to
any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations to us. The
acceleration due to gravity is so important that its magnitude is given its own symbol, . It is constant at any given location on
Earth and has the average value

Although varies from to , depending on latitude, altitude, underlying geological formations, and local
topography, the average value of will be used in this text unless otherwise specified. The direction of the acceleration
due to gravity is downward (towards the center of Earth). In fact, its direction defines what we call vertical. Note that whether
the acceleration in the kinematic equations has the value or depends on how we define our coordinate system. If we
define the upward direction as negative, then , and if we define the downward direction as positive,
then .

One-Dimensional Motion Involving Gravity
The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress
toward more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These
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assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once
the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is
one-dimensional and has constant acceleration of magnitude . We will also represent vertical displacement with the symbol
and use for horizontal displacement.

EXAMPLE 2.14

Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward
A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the
edge of the cliff as it falls back to earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is thrown,
neglecting the effects of air resistance.

Strategy

Draw a sketch.

Figure 2.39

We are asked to determine the position at various times. It is reasonable to take the initial position to be zero. This problem
involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up being
positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive too. The
acceleration due to gravity is downward, so is negative. It is crucial that the initial velocity and the acceleration due to gravity
have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion and will slow and
eventually reverse it.

and ; and ; and andSince we are asked for values of position and velocity at three times, we will refer to these as 

Solution for Position

1. Identify the knowns. We know that ; ; ; and .

2. Identify the best equation to use. We will use because it includes only one unknown, (or , here),
which is the value we want to find.

3. Plug in the known values and solve for .

Kinematic Equations for Objects in Free-Fall where Acceleration = -g
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Discussion

The rock is 8.10 m above its starting point at s, since . It could be moving up or down; the only way to tell is to
calculate and find out if it is positive or negative.

Solution for Velocity

1. Identify the knowns. We know that ; ; ; and . We also know from
the solution above that .

2. Identify the best equation to use. The most straightforward is (from , where
).

3. Plug in the knowns and solve.

Discussion

The positive value for means that the rock is still heading upward at . However, it has slowed from its original 13.0
m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at and are the same as those above. The results are
summarized in Table 2.1 and illustrated in Figure 2.40.

Time, t Position, y Velocity, v Acceleration, a

Table 2.1 Results

Graphing the data helps us understand it more clearly.
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Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice

that velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows

vertical position only. It is easy to get the impression that the graph shows some horizontal motion—the shape of the graph looks like the

path of a projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and

straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and
are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward.

At 3.00 s, both and are negative, meaning the rock is below its starting point and continuing to move downward. Notice
that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is

for the whole trip—while it is moving up and while it is moving down. Note that the values for are the positions
(or displacements) of the rock, not the total distances traveled. Finally, note that free-fall applies to upward motion as well as
downward. Both have the same acceleration—the acceleration due to gravity, which remains constant the entire time.
Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we will
discuss in more detail later.
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EXAMPLE 2.15

Calculating Velocity of a Falling Object: A Rock Thrown Down
What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question, calculate
the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial speed of 13.0
m/s.

Strategy

Draw a sketch.

Figure 2.41

Since up is positive, the final position of the rock will be negative because it finishes below the starting point at .
Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final
velocity to be negative since the rock will continue to move downward.

Solution

1. Identify the knowns. ; ; ; .

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation works well
because the only unknown in it is . (We will plug in for .)

3. Enter the known values

where we have retained extra significant figures because this is an intermediate result.

Taking the square root, and noting that a square root can be positive or negative, gives

The negative root is chosen to indicate that the rock is still heading down. Thus,

Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same initial
speed. (See Example 2.14 and Figure 2.42(a).) This is not a coincidental result. Because we only consider the acceleration due to
gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical position relative to the
starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the starting point (using the

Making Connections: Take-Home Experiment—Reaction Time
A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index
finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the
ruler unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is
that due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your
foot to go from the gas pedal to the brake was twice this reaction time?
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method from Example 2.14) when the initial velocity is 13.0 m/s straight up, a result of is obtained. Here both signs
are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the negative value occurs when the
rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.

Figure 2.42 (a) A person throws a rock straight up, as explored in Example 2.14. The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00

s. (b) A person throws a rock straight down from a cliff with the same initial speed as before, as in Example 2.15. Note that at the same

distance below the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of . It rises and then falls
back down. When its position is on its way back down, its velocity is . That is, it has the same speed on its way
down as on its way up. We would then expect its velocity at a position of to be the same whether we have thrown
it upwards at or thrown it downwards at . The velocity of the rock on its way down from is the
same whether we have thrown it up or down to start with, as long as the speed with which it was initially thrown is the same.
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EXAMPLE 2.16

Find g from Data on a Falling Object
The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are on a
hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt beneath
you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics laboratory course. An
object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall a known distance is
measured. See, for example, Figure 2.43. Very precise results can be produced with this method if sufficient care is taken in
measuring the distance fallen and the elapsed time.

Figure 2.43 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly

with time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

2.7 • Falling Objects 75



Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise acceleration
due to gravity at this location?

Strategy

Draw a sketch.

Figure 2.44

We need to solve for acceleration . Note that in this case, displacement is downward and therefore negative, as is acceleration.

Solution

1. Identify the knowns. ; ; ; .

2. Choose the equation that allows you to solve for using the known values.

3. Substitute 0 for and rearrange the equation to solve for . Substituting 0 for yields

Solving for gives

4. Substitute known values yields

so, because with the directions we have chosen,

Discussion

The negative value for indicates that the gravitational acceleration is downward, as expected. We expect the value to be
somewhere around the average value of , so makes sense. Since the data going into the calculation are
relatively precise, this value for is more precise than the average value of ; it represents the local value for the
acceleration due to gravity.

CHECK YOUR UNDERSTANDING
A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air
resistance), how long does it take to hit the water?

Solution
We know that initial position , final position , and . We can then use the equation

to solve for . Inserting , we obtain
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where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to hit the
water.

PHET EXPLORATIONS

Equation Grapher
Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. ) to see how they add to generate the polynomial curve.

Click to view content (https://phet.colorado.edu/sims/equation-grapher/equation-grapher_en.html)

Figure 2.45

2.8 Graphical Analysis of One-Dimensional Motion
A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal
relationships between physical quantities. This section uses graphs of position, velocity, and acceleration versus time to
illustrate one-dimensional kinematics.

Slopes and General Relationships
First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities
are plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the
vertical axis a dependent variable. If we call the horizontal axis the -axis and the vertical axis the -axis, as in Figure 2.46, a
straight-line graph has the general form

Here is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter is used for the
y-intercept, which is the point at which the line crosses the vertical axis.

Figure 2.46 A straight-line graph. The equation for a straight line is .

Graph of Position vs. Time (a = 0, so v is constant)
Time is usually an independent variable that other quantities, such as position, depend upon. A graph of position versus time
would, thus, have on the vertical axis and on the horizontal axis. Figure 2.47 is just such a straight-line graph. It shows a
graph of position versus time for a jet-powered car on a very flat dry lake bed in Nevada.
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Figure 2.47 Graph of position versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average
velocity and the intercept is position at time zero—that is, . Substituting these symbols into gives

or

Thus a graph of position versus time gives a general relationship among displacement(change in position), velocity, and time, as
well as giving detailed numerical information about a specific situation.

From the figure we can see that the car has a position of 525 m at 0.50 s and 2000 m at 6.40 s. Its position at other times can be
read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

EXAMPLE 2.17

Determining Average Velocity from a Graph of Position versus Time: Jet Car
Find the average velocity of the car whose position is graphed in Figure 2.47.

Strategy

The slope of a graph of vs. is average velocity, since slope equals rise over run. In this case, rise = change in position and run =
change in time, so that

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most
accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is
proportionally smaller if the interval is larger.)
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2.91

The Slope of x vs. t
The slope of the graph of position vs. time is velocity .

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for
Constant Acceleration in One Dimension.
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Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525 m).
(Note, however, that you could choose any two points.)

2. Substitute the and values of the chosen points into the equation. Remember in calculating change we always use final
value minus initial value.

yielding

Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of 60
mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when is constant but
The graphs in Figure 2.48 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only
during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the
position and velocity are initially 200 m and 15 m/s, respectively.
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Figure 2.48 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an vs. graph is

velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any

point is the slope of the tangent at that point. (b) The slope of the vs. graph is constant for this part of the motion, indicating constant

acceleration. (c) Acceleration has the constant value of over the time interval plotted.
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Figure 2.49 A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of position versus time in Figure 2.48(a) is a curve rather than a straight line. The slope of the curve becomes steeper
as time progresses, showing that the velocity is increasing over time. The slope at any point on a position-versus-time graph is
the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and
taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.48(a). If this is done at every point on the
curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.48(b) is obtained.
Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.48(c).

EXAMPLE 2.18

Determining Instantaneous Velocity from the Slope at a Point: Jet Car
Calculate the velocity of the jet car at a time of 25 s by finding the slope of the vs. graph in the graph below.

Figure 2.50 The slope of an vs. graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the

tangent at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is illustrated
in Figure 2.50, where Q is the point at .

Solution

1. Find the tangent line to the curve at .

2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m at time
32 s.

3. Plug these endpoints into the equation to solve for the slope, .
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Thus,

Discussion

This is the value given in this figure’s table for at . The value of 140 m/s for is plotted in Figure 2.50. The entire
graph of vs. can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run;
on a vs. graph, rise = change in velocity and run = change in time .

Since the velocity versus time graph in Figure 2.48(b) is a straight line, its slope is the same everywhere, implying that
acceleration is constant. Acceleration versus time is graphed in Figure 2.48(c).

Additional general information can be obtained from Figure 2.50 and the expression for a straight line, .

In this case, the vertical axis is , the intercept is , the slope is , and the horizontal axis is . Substituting these
symbols yields

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was
also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important
way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against
another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs
such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then
performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant
Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in Figure 2.51. Time again
starts at zero, and the initial position and velocity are 2900 m and 165 m/s, respectively. (These were the final position and
velocity of the car in the motion graphed in Figure 2.48.) Acceleration gradually decreases from to zero when the car
hits 250 m/s. The slope of the vs. graph increases until , after which time the slope is constant. Similarly, velocity
increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.
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The Slope of v vs. t
The slope of a graph of velocity vs. time is acceleration .
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Figure 2.51 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.48 ends.

(a) The slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this

graph is acceleration; it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

EXAMPLE 2.19

Calculating Acceleration from a Graph of Velocity versus Time
Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the vs. graph in Figure 2.51(b).

Strategy

The slope of the curve at is equal to the slope of the line tangent at that point, as illustrated in Figure 2.51(b).
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Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, .

Discussion

Note that this value for is consistent with the value plotted in Figure 2.51(c) at .

A graph of position versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can
be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph
is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point.
Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be
used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for
underlying relationships.

CHECK YOUR UNDERSTANDING
A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the
graph. (b)What would a graph of the ship’s acceleration look like?

Figure 2.52

Solution
(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate
decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in the
second leg, and constant negative acceleration.

Figure 2.53

2.100

2.101

84 Chapter 2 • Kinematics

Access for free at openstax.org.



GLOSSARY
acceleration the rate of change in velocity; the change in

velocity over time
acceleration due to gravity acceleration of an object as a

result of gravity
average acceleration the change in velocity divided by the

time over which it changes
average speed distance traveled divided by time during

which motion occurs
average velocity displacement divided by time over which

displacement occurs
deceleration acceleration in the direction opposite to

velocity; acceleration that results in a decrease in velocity
dependent variable the variable that is being measured;

usually plotted along the -axis
displacement the change in position of an object
distance the magnitude of displacement between two

positions
distance traveled the total length of the path traveled

between two positions
elapsed time the difference between the ending time and

beginning time
free-fall the state of movement that results from

gravitational force only
independent variable the variable that the dependent

variable is measured with respect to; usually plotted
along the -axis

instantaneous acceleration acceleration at a specific point
in time

instantaneous speed magnitude of the instantaneous
velocity

instantaneous velocity velocity at a specific instant, or the
average velocity over an infinitesimal time interval

kinematics the study of motion without considering its
causes

model simplified description that contains only those
elements necessary to describe the physics of a physical
situation

position the location of an object at a particular time
scalar a quantity that is described by magnitude, but not

direction
slope the difference in -value (the rise) divided by the

difference in -value (the run) of two points on a straight
line

time change, or the interval over which change occurs
vector a quantity that is described by both magnitude and

direction
y-intercept the value when = 0, or when the graph

crosses the -axis

SECTION SUMMARY
2.1 Displacement

• Kinematics is the study of motion without considering
its causes. In this chapter, it is limited to motion along a
straight line, called one-dimensional motion.

• Displacement is the change in position of an object.
• In symbols, displacement is defined to be

where is the initial position and is the final
position. In this text, the Greek letter (delta) always
means “change in” whatever quantity follows it. The SI
unit for displacement is the meter (m). Displacement
has a direction as well as a magnitude.

• When you start a problem, assign which direction will
be positive.

• Distance is the magnitude of displacement between two
positions.

• Distance traveled is the total length of the path traveled
between two positions.

2.2 Vectors, Scalars, and
Coordinate Systems

• A vector is any quantity that has magnitude and
direction.

• A scalar is any quantity that has magnitude but no

direction.
• Displacement and velocity are vectors, whereas distance

and speed are scalars.
• In one-dimensional motion, direction is specified by a

plus or minus sign to signify left or right, up or down,
and the like.

2.3 Time, Velocity, and Speed
• Time is measured in terms of change, and its SI unit is

the second (s). Elapsed time for an event is

where is the final time and is the initial time. The
initial time is often taken to be zero, as if measured with
a stopwatch; the elapsed time is then just .

• Average velocity is defined as displacement divided by
the travel time. In symbols, average velocity is

• The SI unit for velocity is m/s.
• Velocity is a vector and thus has a direction.
• Instantaneous velocity is the velocity at a specific

instant or the average velocity for an infinitesimal
interval.

• Instantaneous speed is the magnitude of the
instantaneous velocity.
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• Instantaneous speed is a scalar quantity, as it has no
direction specified.

• Average speed is the total distance traveled divided by
the elapsed time. (Average speed is not the magnitude
of the average velocity.) Speed is a scalar quantity; it has
no direction associated with it.

2.4 Acceleration
• Acceleration is the rate at which velocity changes. In

symbols, average acceleration is

• The SI unit for acceleration is .
• Acceleration is a vector, and thus has a both a

magnitude and direction.
• Acceleration can be caused by either a change in the

magnitude or the direction of the velocity.
• Instantaneous acceleration is the acceleration at a

specific instant in time.
• Deceleration is an acceleration with a direction opposite

to that of the velocity.

2.5 Motion Equations for Constant
Acceleration in One Dimension

• To simplify calculations we take acceleration to be
constant, so that at all times.

• We also take initial time to be zero.
• Initial position and velocity are given a subscript 0; final

values have no subscript. Thus,

• The following kinematic equations for motion with
constant are useful:

• In vertical motion, is substituted for .

2.6 Problem-Solving Basics for
One-Dimensional Kinematics

• The six basic problem solving steps for physics are:

Step 1. Examine the situation to determine which
physical principles are involved.

Step 2. Make a list of what is given or can be inferred
from the problem as stated (identify the knowns).

Step 3. Identify exactly what needs to be determined in
the problem (identify the unknowns).

Step 4. Find an equation or set of equations that can
help you solve the problem.

Step 5. Substitute the knowns along with their units
into the appropriate equation, and obtain numerical
solutions complete with units.

Step 6. Check the answer to see if it is reasonable: Does
it make sense?

2.7 Falling Objects
• An object in free-fall experiences constant acceleration

if air resistance is negligible.
• On Earth, all free-falling objects have an acceleration

due to gravity , which averages

• Whether the acceleration a should be taken as or
is determined by your choice of coordinate system. If
you choose the upward direction as positive,

is negative. In the opposite
case, is positive. Since
acceleration is constant, the kinematic equations above
can be applied with the appropriate or
substituted for .

• For objects in free-fall, up is normally taken as positive
for displacement, velocity, and acceleration.

2.8 Graphical Analysis of One-
Dimensional Motion

• Graphs of motion can be used to analyze motion.
• Graphical solutions yield identical solutions to

mathematical methods for deriving motion equations.
• The slope of a graph of displacement vs. time is

velocity .
• The slope of a graph of velocity vs. time graph is

acceleration .
• Average velocity, instantaneous velocity, and

acceleration can all be obtained by analyzing graphs.
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CONCEPTUAL QUESTIONS
2.1 Displacement
1. Give an example in which there are clear distinctions

among distance traveled, displacement, and magnitude
of displacement. Specifically identify each quantity in
your example.

2. Under what circumstances does distance traveled equal
magnitude of displacement? What is the only case in
which magnitude of displacement and displacement are
exactly the same?

3. Bacteria move back and forth by using their flagella
(structures that look like little tails). Speeds of up to

have been observed. The
total distance traveled by a bacterium is large for its size,
while its displacement is small. Why is this?

2.2 Vectors, Scalars, and
Coordinate Systems
4. A student writes, “A bird that is diving for prey has a

speed of .” What is wrong with the student’s
statement? What has the student actually described?
Explain.

5. What is the speed of the bird in Exercise 2.4?
6. Acceleration is the change in velocity over time. Given

this information, is acceleration a vector or a scalar
quantity? Explain.

7. A weather forecast states that the temperature is
predicted to be the following day. Is this
temperature a vector or a scalar quantity? Explain.

2.3 Time, Velocity, and Speed
8. Give an example (but not one from the text) of a device

used to measure time and identify what change in that
device indicates a change in time.

9. There is a distinction between average speed and the
magnitude of average velocity. Give an example that
illustrates the difference between these two quantities.

10. Does a car’s odometer measure position or
displacement? Does its speedometer measure speed or
velocity?

11. If you divide the total distance traveled on a car trip (as
determined by the odometer) by the time for the trip, are
you calculating the average speed or the magnitude of
the average velocity? Under what circumstances are
these two quantities the same?

12. How are instantaneous velocity and instantaneous
speed related to one another? How do they differ?

2.4 Acceleration
13. Is it possible for speed to be constant while acceleration

is not zero? Give an example of such a situation.

14. Is it possible for velocity to be constant while
acceleration is not zero? Explain.

15. Give an example in which velocity is zero yet acceleration
is not.

16. If a subway train is moving to the left (has a negative
velocity) and then comes to a stop, what is the direction
of its acceleration? Is the acceleration positive or
negative?

17. Plus and minus signs are used in one-dimensional
motion to indicate direction. What is the sign of an
acceleration that reduces the magnitude of a negative
velocity? Of a positive velocity?

2.6 Problem-Solving Basics for
One-Dimensional Kinematics
18. What information do you need in order to choose which

equation or equations to use to solve a problem?
Explain.

19. What is the last thing you should do when solving a
problem? Explain.

2.7 Falling Objects
20. What is the acceleration of a rock thrown straight

upward on the way up? At the top of its flight? On the
way down?

21. An object that is thrown straight up falls back to Earth.
This is one-dimensional motion. (a) When is its velocity
zero? (b) Does its velocity change direction? (c) Does the
acceleration due to gravity have the same sign on the
way up as on the way down?

22. Suppose you throw a rock nearly straight up at a
coconut in a palm tree, and the rock misses on the way
up but hits the coconut on the way down. Neglecting air
resistance, how does the speed of the rock when it hits
the coconut on the way down compare with what it
would have been if it had hit the coconut on the way up?
Is it more likely to dislodge the coconut on the way up or
down? Explain.

23. If an object is thrown straight up and air resistance is
negligible, then its speed when it returns to the starting
point is the same as when it was released. If air
resistance were not negligible, how would its speed
upon return compare with its initial speed? How would
the maximum height to which it rises be affected?

24. The severity of a fall depends on your speed when you
strike the ground. All factors but the acceleration due to
gravity being the same, how many times higher could a
safe fall on the Moon be than on Earth (gravitational
acceleration on the Moon is about 1/6 that of the Earth)?
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25. How many times higher could an astronaut jump on the
Moon than on Earth if his takeoff speed is the same in
both locations (gravitational acceleration on the Moon is
about 1/6 of on Earth)?

2.8 Graphical Analysis of One-
Dimensional Motion
26. (a) Explain how you can use the graph of position versus time

in Figure 2.54 to describe the change in velocity over time.
Identify (b) the time ( , , , , or ) at which the
instantaneous velocity is greatest, (c) the time at which it is
zero, and (d) the time at which it is negative.

Figure 2.54

27. (a) Sketch a graph of velocity versus time corresponding to
the graph of position versus time given in Figure 2.55. (b)
Identify the time or times ( , , , etc.) at which the
instantaneous velocity is greatest. (c) At which times is it
zero? (d) At which times is it negative?

Figure 2.55

28. (a) Explain how you can determine the acceleration over time
from a velocity versus time graph such as the one in Figure
2.56. (b) Based on the graph, how does acceleration change
over time?

Figure 2.56

29. (a) Sketch a graph of acceleration versus time corresponding
to the graph of velocity versus time given in Figure 2.57. (b)
Identify the time or times ( , , , etc.) at which the
acceleration is greatest. (c) At which times is it zero? (d) At
which times is it negative?

Figure 2.57
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30. Consider the velocity vs. time graph of a person in an
elevator shown in Figure 2.58. Suppose the elevator is
initially at rest. It then accelerates for 3 seconds, maintains
that velocity for 15 seconds, then decelerates for 5 seconds
until it stops. The acceleration for the entire trip is not
constant so we cannot use the equations of motion from
Motion Equations for Constant Acceleration in One
Dimension for the complete trip. (We could, however, use
them in the three individual sections where acceleration is a
constant.) Sketch graphs of (a) position vs. time and (b)
acceleration vs. time for this trip.

Figure 2.58

31. A cylinder is given a push and then rolls up an inclined
plane. If the origin is the starting point, sketch the
position, velocity, and acceleration of the cylinder vs.
time as it goes up and then down the plane.

PROBLEMS & EXERCISES
2.1 Displacement

Figure 2.59

1. Find the following for path A in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to
finish.

2. Find the following for path B in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to
finish.

3. Find the following for path C in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to
finish.

4. Find the following for path D in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to
finish.

2.3 Time, Velocity, and Speed
5. (a) Calculate Earth’s average speed relative to the Sun. (b)

What is its average velocity over a period of one year?
6. A helicopter blade spins at exactly 100 revolutions per

minute. Its tip is 5.00 m from the center of rotation. (a)
Calculate the average speed of the blade tip in the
helicopter’s frame of reference. (b) What is its average
velocity over one revolution?

7. The North American and European continents are
moving apart at a rate of about 3 cm/y. At this rate how
long will it take them to drift 500 km farther apart than
they are at present?

8. Land west of the San Andreas fault in southern California
is moving at an average velocity of about 6 cm/y
northwest relative to land east of the fault. Los Angeles is
west of the fault and may thus someday be at the same
latitude as San Francisco, which is east of the fault. How
far in the future will this occur if the displacement to be
made is 590 km northwest, assuming the motion
remains constant?
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9. On May 26, 1934, a streamlined, stainless steel diesel
train called the Zephyr set the world’s nonstop long-
distance speed record for trains. Its run from Denver to
Chicago took 13 hours, 4 minutes, 58 seconds, and was
witnessed by more than a million people along the route.
The total distance traveled was 1633.8 km. What was its
average speed in km/h and m/s?

10. Tidal friction is slowing the rotation of the Earth. As a
result, the orbit of the Moon is increasing in radius at a
rate of approximately 4 cm/year. Assuming this to be a
constant rate, how many years will pass before the
radius of the Moon’s orbit increases by
(1%)?

11. A student drove to the university from her home and
noted that the odometer reading of her car increased by
12.0 km. The trip took 18.0 min. (a) What was her
average speed? (b) If the straight-line distance from her
home to the university is 10.3 km in a direction
south of east, what was her average velocity? (c) If she
returned home by the same path 7 h 30 min after she left,
what were her average speed and velocity for the entire
trip?

12. The speed of propagation of the action potential (an
electrical signal) in a nerve cell depends (inversely) on
the diameter of the axon (nerve fiber). If the nerve cell
connecting the spinal cord to your feet is 1.1 m long, and
the nerve impulse speed is 18 m/s, how long does it take
for the nerve signal to travel this distance?

13. Conversations with astronauts on the lunar surface were
characterized by a kind of echo in which the earthbound
person’s voice was so loud in the astronaut’s space
helmet that it was picked up by the astronaut’s
microphone and transmitted back to Earth. It is
reasonable to assume that the echo time equals the time
necessary for the radio wave to travel from the Earth to
the Moon and back (that is, neglecting any time delays in
the electronic equipment). Calculate the distance from
Earth to the Moon given that the echo time was 2.56 s
and that radio waves travel at the speed of light

.
14. A football quarterback runs 15.0 m straight down the

playing field in 2.50 s. He is then hit and pushed 3.00 m
straight backward in 1.75 s. He breaks the tackle and
runs straight forward another 21.0 m in 5.20 s. Calculate
his average velocity (a) for each of the three intervals and
(b) for the entire motion.

15. The planetary model of the atom pictures electrons
orbiting the atomic nucleus much as planets orbit the 
Sun. In this model you can view hydrogen, the simplest 
atom, as having a single electron in a circular orbit

in diameter. (a) If the average speed of 
the electron in this orbit is known to be
calculate the number of revolutions per second it makes 
about the nucleus. (b) What is the electron’s average 
velocity?

2.4 Acceleration
16. A cheetah can accelerate from rest to a speed of 30.0 m/s

in 7.00 s. What is its acceleration?
17. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who
studied the effects of extreme deceleration on the
human body. On December 10, 1954, Stapp rode a rocket
sled, accelerating from rest to a top speed of 282 m/s
(1015 km/h) in 5.00 s, and was brought jarringly back to
rest in only 1.40 s! Calculate his (a) acceleration and (b)
deceleration. Express each in multiples of

by taking its ratio to the acceleration of
gravity.

18. A commuter backs her car out of her garage with an
acceleration of . (a) How long does it take her
to reach a speed of 2.00 m/s? (b) If she then brakes to a
stop in 0.800 s, what is her deceleration?

19. Assume that an intercontinental ballistic missile goes
from rest to a suborbital speed of 6.50 km/s in 60.0 s
(the actual speed and time are classified). What is its
average acceleration in and in multiples of

2.5 Motion Equations for Constant
Acceleration in One Dimension
20. An Olympic-class sprinter starts a race with an

acceleration of . (a) What is her speed 2.40 s
later? (b) Sketch a graph of her position vs. time for this
period.

21. A well-thrown ball is caught in a well-padded mitt. If the
deceleration of the ball is , and 1.85
ms elapses from the time the ball first
touches the mitt until it stops, what was the initial
velocity of the ball?

22. A bullet in a gun is accelerated from the firing chamber
to the end of the barrel at an average rate of

for . What is its
muzzle velocity (that is, its final velocity)?
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23. (a) A light-rail commuter train accelerates at a rate of
. How long does it take to reach its top speed

of 80.0 km/h, starting from rest? (b) The same train
ordinarily decelerates at a rate of . How long
does it take to come to a stop from its top speed? (c) In
emergencies the train can decelerate more rapidly,
coming to rest from 80.0 km/h in 8.30 s. What is its
emergency deceleration in ?

24. While entering a freeway, a car accelerates from rest at a
rate of for 12.0 s. (a) Draw a sketch of the
situation. (b) List the knowns in this problem. (c) How
far does the car travel in those 12.0 s? To solve this part,
first identify the unknown, and then discuss how you
chose the appropriate equation to solve for it. After
choosing the equation, show your steps in solving for
the unknown, check your units, and discuss whether the
answer is reasonable. (d) What is the car’s final velocity?
Solve for this unknown in the same manner as in part
(c), showing all steps explicitly.

25. At the end of a race, a runner decelerates from a velocity
of 9.00 m/s at a rate of . (a) How far does she
travel in the next 5.00 s? (b) What is her final velocity? (c)
Evaluate the result. Does it make sense?

26. Professional Application:
Blood is accelerated from rest to 30.0 cm/s in a distance
of 1.80 cm by the left ventricle of the heart. (a) Make a
sketch of the situation. (b) List the knowns in this
problem. (c) How long does the acceleration take? To
solve this part, first identify the unknown, and then
discuss how you chose the appropriate equation to solve
for it. After choosing the equation, show your steps in
solving for the unknown, checking your units. (d) Is the
answer reasonable when compared with the time for a
heartbeat?

27. In a slap shot, a hockey player accelerates the puck from
a velocity of 8.00 m/s to 40.0 m/s in the same direction.
If this shot takes , calculate the distance
over which the puck accelerates.

28. A powerful motorcycle can accelerate from rest to 26.8
m/s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) How far does it travel in that time?

29. Freight trains can produce only relatively small
accelerations and decelerations. (a) What is the final
velocity of a freight train that accelerates at a rate of

for 8.00 min, starting with an initial
velocity of 4.00 m/s? (b) If the train can slow down at a
rate of , how long will it take to come to a
stop from this velocity? (c) How far will it travel in each
case?

30. A fireworks shell is accelerated from rest to a velocity of
65.0 m/s over a distance of 0.250 m. (a) How long did
the acceleration last? (b) Calculate the acceleration.

31. A swan on a lake gets airborne by flapping its wings and
running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from
rest at an average rate of , how far will it
travel before becoming airborne? (b) How long does this
take?

32. Professional Application:
A woodpecker’s brain is specially protected from large
decelerations by tendon-like attachments inside the
skull. While pecking on a tree, the woodpecker’s head
comes to a stop from an initial velocity of 0.600 m/s in a
distance of only 2.00 mm. (a) Find the acceleration in

and in multiples of . (b)
Calculate the stopping time. (c) The tendons cradling the
brain stretch, making its stopping distance 4.50 mm
(greater than the head and, hence, less deceleration of
the brain). What is the brain’s deceleration, expressed in
multiples of ?

33. An unwary football player collides with a padded
goalpost while running at a velocity of 7.50 m/s and
comes to a full stop after compressing the padding and
his body 0.350 m. (a) What is his deceleration? (b) How
long does the collision last?

34. In World War II, there were several reported cases of
airmen who jumped from their flaming airplanes with
no parachute to escape certain death. Some fell about
20,000 feet (6000 m), and some of them survived, with
few life-threatening injuries. For these lucky pilots, the
tree branches and snow drifts on the ground allowed
their deceleration to be relatively small. If we assume
that a pilot’s speed upon impact was 123 mph (54 m/s),
then what was his deceleration? Assume that the trees
and snow stopped him over a distance of 3.0 m.

35. Consider a grey squirrel falling out of a tree to the
ground. (a) If we ignore air resistance in this case (only
for the sake of this problem), determine a squirrel’s
velocity just before hitting the ground, assuming it fell
from a height of 3.0 m. (b) If the squirrel stops in a
distance of 2.0 cm through bending its limbs, compare
its deceleration with that of the airman in the previous
problem.

36. An express train passes through a station. It enters with
an initial velocity of 22.0 m/s and decelerates at a rate of

as it goes through. The station is 210 m
long. (a) How long is the nose of the train in the station?
(b) How fast is it going when the nose leaves the station?
(c) If the train is 130 m long, when does the end of the
train leave the station? (d) What is the velocity of the end
of the train as it leaves?
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37. Dragsters can actually reach a top speed of 145 m/s in
only 4.45 s—considerably less time than given in
Example 2.10 and Example 2.11. (a) Calculate the average
acceleration for such a dragster. (b) Find the final
velocity of this dragster starting from rest and
accelerating at the rate found in (a) for 402 m (a quarter
mile) without using any information on time. (c) Why is
the final velocity greater than that used to find the
average acceleration? Hint: Consider whether the
assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would
be greater at the beginning or end of the run and what
effect that would have on the final velocity.

38. A bicycle racer sprints at the end of a race to clinch a
victory. The racer has an initial velocity of 11.5 m/s and
accelerates at the rate of for 7.00 s. (a)
What is his final velocity? (b) The racer continues at this
velocity to the finish line. If he was 300 m from the
finish line when he started to accelerate, how much time
did he save? (c) One other racer was 5.00 m ahead when
the winner started to accelerate, but he was unable to
accelerate, and traveled at 11.8 m/s until the finish line.
How far ahead of him (in meters and in seconds) did the
winner finish?

39. In 1967, New Zealander Burt Munro set the world record
for an Indian motorcycle, on the Bonneville Salt Flats in
Utah, with a maximum speed of 183.58 mi/h. The one-
way course was 5.00 mi long. Acceleration rates are
often described by the time it takes to reach 60.0 mi/h
from rest. If this time was 4.00 s, and Burt accelerated
at this rate until he reached his maximum speed, how
long did it take Burt to complete the course?

40. (a) A world record was set for the men’s 100-m dash in
the 2008 Olympic Games in Beijing by Usain Bolt of
Jamaica. Bolt “coasted” across the finish line with a time
of 9.69 s. If we assume that Bolt accelerated for 3.00 s to
reach his maximum speed, and maintained that speed
for the rest of the race, calculate his maximum speed
and his acceleration. (b) During the same Olympics, Bolt
also set the world record in the 200-m dash with a time
of 19.30 s. Using the same assumptions as for the 100-m
dash, what was his maximum speed for this race?

2.7 Falling Objects
Assume air resistance is negligible unless otherwise stated.

41. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown
straight up with an initial velocity of 15.0 m/s. Take the
point of release to be .

42. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock
thrown straight down with an initial velocity of 14.0 m/s
from the Verrazano Narrows Bridge in New York City.
The roadway of this bridge is 70.0 m above the water.

43. A basketball referee tosses the ball straight up for the
starting tip-off. At what velocity must a basketball
player leave the ground to rise 1.25 m above the floor in
an attempt to get the ball?

44. A rescue helicopter is hovering over a person whose boat
has sunk. One of the rescuers throws a life preserver
straight down to the victim with an initial velocity of
1.40 m/s and observes that it takes 1.8 s to reach the
water. (a) List the knowns in this problem. (b) How high
above the water was the preserver released? Note that
the downdraft of the helicopter reduces the effects of air
resistance on the falling life preserver, so that an
acceleration equal to that of gravity is reasonable.

45. A dolphin in an aquatic show jumps straight up out of
the water at a velocity of 13.0 m/s. (a) List the knowns in
this problem. (b) How high does his body rise above the
water? To solve this part, first note that the final velocity
is now a known and identify its value. Then identify the
unknown, and discuss how you chose the appropriate
equation to solve for it. After choosing the equation,
show your steps in solving for the unknown, checking
units, and discuss whether the answer is reasonable. (c)
How long is the dolphin in the air? Neglect any effects
due to his size or orientation.

46. A swimmer bounces straight up from a diving board
and falls feet first into a pool. She starts with a velocity
of 4.00 m/s, and her takeoff point is 1.80 m above the
pool. (a) How long are her feet in the air? (b) What is her
highest point above the board? (c) What is her velocity
when her feet hit the water?

47. (a) Calculate the height of a cliff if it takes 2.35 s for a
rock to hit the ground when it is thrown straight up
from the cliff with an initial velocity of 8.00 m/s. (b)
How long would it take to reach the ground if it is
thrown straight down with the same speed?

48. A very strong, but inept, shot putter puts the shot
straight up vertically with an initial velocity of 11.0 m/s.
How long does he have to get out of the way if the shot
was released at a height of 2.20 m, and he is 1.80 m tall?

49. You throw a ball straight up with an initial velocity of
15.0 m/s. It passes a tree branch on the way up at a
height of 7.00 m. How much additional time will pass
before the ball passes the tree branch on the way back
down?

50. A kangaroo can jump over an object 2.50 m high. (a)
Calculate its vertical speed when it leaves the ground. (b)
How long is it in the air?
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51. Standing at the base of one of the cliffs of Mt. Arapiles in
Victoria, Australia, a hiker hears a rock break loose from
a height of 105 m. He can’t see the rock right away but
then does, 1.50 s later. (a) How far above the hiker is the
rock when he can see it? (b) How much time does he have
to move before the rock hits his head?

52. An object is dropped from a height of 75.0 m above
ground level. (a) Determine the distance traveled during
the first second. (b) Determine the final velocity at
which the object hits the ground. (c) Determine the
distance traveled during the last second of motion
before hitting the ground.

53. There is a 250-m-high cliff at Half Dome in Yosemite
National Park in California. Suppose a boulder breaks
loose from the top of this cliff. (a) How fast will it be
going when it strikes the ground? (b) Assuming a
reaction time of 0.300 s, how long will a tourist at the
bottom have to get out of the way after hearing the
sound of the rock breaking loose (neglecting the height
of the tourist, which would become negligible anyway if
hit)? The speed of sound is 335 m/s on this day.

54. A ball is thrown straight up. It passes a 2.00-m-high
window 7.50 m off the ground on its path up and takes
0.312 s to go past the window. What was the ball’s initial
velocity? Hint: First consider only the distance along the
window, and solve for the ball's velocity at the bottom of
the window. Next, consider only the distance from the
ground to the bottom of the window, and solve for the
initial velocity using the velocity at the bottom of the
window as the final velocity.

55. Suppose you drop a rock into a dark well and, using
precision equipment, you measure the time for the
sound of a splash to return. (a) Neglecting the time
required for sound to travel up the well, calculate the
distance to the water if the sound returns in 2.0000 s.
(b) Now calculate the distance taking into account the
time for sound to travel up the well. The speed of sound
is 332.00 m/s in this well.

56. A steel ball is dropped onto a hard floor from a height of
1.50 m and rebounds to a height of 1.45 m. (a) Calculate
its velocity just before it strikes the floor. (b) Calculate its
velocity just after it leaves the floor on its way back up.
(c) Calculate its acceleration during contact with the
floor if that contact lasts 0.0800 ms .
(d) How much did the ball compress during its collision
with the floor, assuming the floor is absolutely rigid?

57. A coin is dropped from a hot-air balloon that is 300 m
above the ground and rising at 10.0 m/s upward. For the
coin, find (a) the maximum height reached, (b) its
position and velocity 4.00 s after being released, and (c)
the time before it hits the ground.

58. A soft tennis ball is dropped onto a hard floor from a
height of 1.50 m and rebounds to a height of 1.10 m. (a)
Calculate its velocity just before it strikes the floor. (b)
Calculate its velocity just after it leaves the floor on its
way back up. (c) Calculate its acceleration during contact
with the floor if that contact lasts 3.50 ms

. (d) How much did the ball compress
during its collision with the floor, assuming the floor is
absolutely rigid?

2.8 Graphical Analysis of One-
Dimensional Motion
Note: There is always uncertainty in numbers taken from
graphs. If your answers differ from expected values, examine
them to see if they are within data extraction uncertainties
estimated by you.

59. (a) By taking the slope of the curve in Figure 2.60, verify
that the velocity of the jet car is 115 m/s at . (b)
By taking the slope of the curve at any point in Figure
2.61, verify that the jet car’s acceleration is .

Figure 2.60

Figure 2.61
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60. Using approximate values, calculate the slope of the
curve in Figure 2.62 to verify that the velocity at

is 0.208 m/s. Assume all values are known to
3 significant figures.

Figure 2.62

61. Using approximate values, calculate the slope of the
curve in Figure 2.62 to verify that the velocity at

is approximately 0.24 m/s.
62. By taking the slope of the curve in Figure 2.63, verify

that the acceleration is at .

Figure 2.63

63. Construct the position graph for the subway shuttle
train as shown in Figure 2.18(a). Your graph should show
the position of the train, in kilometers, from t = 0 to 20
s. You will need to use the information on acceleration
and velocity given in the examples for this figure.

64. (a) Take the slope of the curve in Figure 2.64 to find the
jogger’s velocity at . (b) Repeat at 7.5 s. These values
must be consistent with the graph in Figure 2.65.

Figure 2.64

Figure 2.65

Figure 2.66
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65. A graph of is shown for a world-class track sprinter
in a 100-m race. (See Figure 2.67). (a) What is his average
velocity for the first 4 s? (b) What is his instantaneous
velocity at ? (c) What is his average acceleration
between 0 and 4 s? (d) What is his time for the race?

Figure 2.67

66. Figure 2.68 shows the position graph for a particle for 6
s. (a) Draw the corresponding Velocity vs. Time graph.
(b) What is the acceleration between 0 s and 2 s? (c)
What happens to the acceleration at exactly 2 s?

Figure 2.68
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